Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Journal of Contingencies & Crisis Management ; 31(2):259-272, 2023.
Article in English | Academic Search Complete | ID: covidwho-2315777

ABSTRACT

This study sought to understand COVID‐19‐related organizational decisions were made across sectors. To gain this understanding, we conducted semi‐structured interviews with organizational decision‐makers in North Carolina about their experiences responding to COVID‐19. Conventional content analysis was used to analyse the context, inputs, and processes involved in decision‐making. Between October 2020 and February 2021, we interviewed 44 decision‐makers from the following sectors: business (n = 4), community non‐profit (n = 3), county government (n = 4), healthcare (n = 5), local public health (n = 5), public safety (n = 7), religious (n = 6), education (n = 7) and transportation (n = 3). We found that during the pandemic, organizations looked to scientific authorities, the decisions of peer organizations, data about COVID‐19, and their own experience with prior crises. Interpretation of inputs was informed by current political events, societal trends, and organization mission. Decision‐makers had to account for divergent internal opinions and community behaviour. To navigate inputs and contextual factors, organizations decentralized decision‐making authority, formed auxiliary decision‐making bodies, learned to resolve internal conflicts, learned in real time from their crisis response, and routinely communicated decisions with their communities. In conclusion, aligned with systems and contingency theories of decision‐making, decision‐making during COVID‐19 depended on an organization's 'fit' within the specifics of their existing system and their ability to orient the dynamics of that system to their own goals. [ FROM AUTHOR] Copyright of Journal of Contingencies & Crisis Management is the property of Wiley-Blackwell and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full . (Copyright applies to all s.)

2.
PNAS Nexus ; 1(3): pgac081, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-2235005

ABSTRACT

To evaluate the joint impact of childhood vaccination rates and school masking policies on community transmission and severe outcomes due to COVID-19, we utilized a stochastic, agent-based simulation of North Carolina to test 24 health policy scenarios. In these scenarios, we varied the childhood (ages 5 to 19) vaccination rate relative to the adult's (ages 20 to 64) vaccination rate and the masking relaxation policies in schools. We measured the overall incidence of disease, COVID-19-related hospitalization, and mortality from 2021 July 1 to 2023 July 1. Our simulation estimates that removing all masks in schools in January 2022 could lead to a 31% to 45%, 23% to 35%, and 13% to 19% increase in cumulative infections for ages 5 to 9, 10 to 19, and the total population, respectively, depending on the childhood vaccination rate. Additionally, achieving a childhood vaccine uptake rate of 50% of adults could lead to a 31% to 39% reduction in peak hospitalizations overall masking scenarios compared with not vaccinating this group. Finally, our simulation estimates that increasing vaccination uptake for the entire eligible population can reduce peak hospitalizations in 2022 by an average of 83% and 87% across all masking scenarios compared to the scenarios where no children are vaccinated. Our simulation suggests that high vaccination uptake among both children and adults is necessary to mitigate the increase in infections from mask removal in schools and workplaces.

3.
Journal of Contingencies & Crisis Management ; : 1, 2022.
Article in English | Academic Search Complete | ID: covidwho-2136523

ABSTRACT

This study sought to understand COVID‐19‐related organizational decisions were made across sectors. To gain this understanding, we conducted semi‐structured interviews with organizational decision‐makers in North Carolina about their experiences responding to COVID‐19. Conventional content analysis was used to analyse the context, inputs, and processes involved in decision‐making. Between October 2020 and February 2021, we interviewed 44 decision‐makers from the following sectors: business (n = 4), community non‐profit (n = 3), county government (n = 4), healthcare (n = 5), local public health (n = 5), public safety (n = 7), religious (n = 6), education (n = 7) and transportation (n = 3). We found that during the pandemic, organizations looked to scientific authorities, the decisions of peer organizations, data about COVID‐19, and their own experience with prior crises. Interpretation of inputs was informed by current political events, societal trends, and organization mission. Decision‐makers had to account for divergent internal opinions and community behaviour. To navigate inputs and contextual factors, organizations decentralized decision‐making authority, formed auxiliary decision‐making bodies, learned to resolve internal conflicts, learned in real time from their crisis response, and routinely communicated decisions with their communities. In conclusion, aligned with systems and contingency theories of decision‐making, decision‐making during COVID‐19 depended on an organization's ‘fit’ within the specifics of their existing system and their ability to orient the dynamics of that system to their own goals. [ FROM AUTHOR]

4.
Human Organization ; 81(3):217-228, 2022.
Article in English | ProQuest Central | ID: covidwho-2045613

ABSTRACT

Flood mitigation and adaptation measures, among other tools to improve resiliency, will be necessary to sustain coastal communities in the face of climate change. Key to successful adaptation will be engineering projects, and critical to the success of those projects will be community engagement and support. Despite the recognized importance of community engagement when addressing complex issues like coastal flooding on which engineers work, most undergraduate engineering programs offer little to no training in community engagement. In this paper, we describe our experiences working with undergraduate engineering students to develop community-driven designs to address flooding and water quality issues in the Lake Mattamuskeet watershed in eastern North Carolina. Through an interdisciplinary approach, student teams learned to engage with local stakeholders to better integrate local knowledge and address issues identified by community members in their designs. Because of the COVID-19 pandemic, all community engagement aspects of the project moved to virtual forums, and we discuss the impact this shift had on the engineering designs as well as student learning outcomes and community connections.

5.
Front Public Health ; 10: 906602, 2022.
Article in English | MEDLINE | ID: covidwho-2022938

ABSTRACT

Introduction: The COVID-19 pandemic response has demonstrated the interconnectedness of individuals, organizations, and other entities jointly contributing to the production of community health. This response has involved stakeholders from numerous sectors who have been faced with new decisions, objectives, and constraints. We examined the cross-sector organizational decision landscape that formed in response to the COVID-19 pandemic in North Carolina. Methods: We conducted virtual semi-structured interviews with 44 organizational decision-makers representing nine sectors in North Carolina between October 2020 and January 2021 to understand the decision-making landscape within the first year of the COVID-19 pandemic. In line with a complexity/systems thinking lens, we defined the decision landscape as including decision-maker roles, key decisions, and interrelationships involved in producing community health. We used network mapping and conventional content analysis to analyze transcribed interviews, identifying relationships between stakeholders and synthesizing key themes. Results: Decision-maker roles were characterized by underlying tensions between balancing organizational mission with employee/community health and navigating organizational vs. individual responsibility for reducing transmission. Decision-makers' roles informed their perspectives and goals, which influenced decision outcomes. Key decisions fell into several broad categories, including how to translate public health guidance into practice; when to institute, and subsequently loosen, public health restrictions; and how to address downstream social and economic impacts of public health restrictions. Lastly, given limited and changing information, as well as limited resources and expertise, the COVID-19 response required cross-sector collaboration, which was commonly coordinated by local health departments who had the most connections of all organization types in the resulting network map. Conclusions: By documenting the local, cross-sector decision landscape that formed in response to COVID-19, we illuminate the impacts different organizations may have on information/misinformation, prevention behaviors, and, ultimately, health. Public health researchers and practitioners must understand, and work within, this complex decision landscape when responding to COVID-19 and future community health challenges.


Subject(s)
COVID-19 , COVID-19/epidemiology , Decision Making , Humans , North Carolina , Pandemics , Public Health/methods
6.
MDM Policy Pract ; 7(2): 23814683221116362, 2022.
Article in English | MEDLINE | ID: covidwho-1968534

ABSTRACT

Background. The COVID-19 pandemic has popularized computer-based decision-support models, which are commonly used to inform decision making amidst complexity. Understanding what organizational decision makers prefer from these models is needed to inform model development during this and future crises. Methods. We recruited and interviewed decision makers from North Carolina across 9 sectors to understand organizational decision-making processes during the first year of the COVID-19 pandemic (N = 44). For this study, we identified and analyzed a subset of responses from interviewees (n = 19) who reported using modeling to inform decision making. We used conventional content analysis to analyze themes from this convenience sample with respect to the source of models and their applications, the value of modeling and recommended applications, and hesitancies toward the use of models. Results. Models were used to compare trends in disease spread across localities, estimate the effects of social distancing policies, and allocate scarce resources, with some interviewees depending on multiple models. Decision makers desired more granular models, capable of projecting disease spread within subpopulations and estimating where local outbreaks could occur, and incorporating a broad set of outcomes, such as social well-being. Hesitancies to the use of modeling included doubts that models could reflect nuances of human behavior, concerns about the quality of data used in models, and the limited amount of modeling specific to the local context. Conclusions. Decision makers perceived modeling as valuable for informing organizational decisions yet described varied ability and willingness to use models for this purpose. These data present an opportunity to educate organizational decision makers on the merits of decision-support modeling and to inform modeling teams on how to build more responsive models that address the needs of organizational decision makers. Highlights: Organizations from a diversity of sectors across North Carolina (including public health, education, business, government, religion, and public safety) have used decision-support modeling to inform decision making during COVID-19.Decision makers wish for models to project the spread of disease, especially at the local level (e.g., individual cities and counties), and to help estimate the outcomes of policies.Some organizational decision makers are hesitant to use modeling to inform their decisions, stemming from doubts that models could reflect nuances of human behavior, concerns about the accuracy and precision of data used in models, and the limited amount of modeling available at the local level.

7.
PNAS nexus ; 1(3), 2022.
Article in English | EuropePMC | ID: covidwho-1958351

ABSTRACT

To evaluate the joint impact of childhood vaccination rates and school masking policies on community transmission and severe outcomes due to COVID-19, we utilized a stochastic, agent-based simulation of North Carolina to test 24 health policy scenarios. In these scenarios, we varied the childhood (ages 5 to 19) vaccination rate relative to the adult's (ages 20 to 64) vaccination rate and the masking relaxation policies in schools. We measured the overall incidence of disease, COVID-19-related hospitalization, and mortality from 2021 July 1 to 2023 July 1. Our simulation estimates that removing all masks in schools in January 2022 could lead to a 31% to 45%, 23% to 35%, and 13% to 19% increase in cumulative infections for ages 5 to 9, 10 to 19, and the total population, respectively, depending on the childhood vaccination rate. Additionally, achieving a childhood vaccine uptake rate of 50% of adults could lead to a 31% to 39% reduction in peak hospitalizations overall masking scenarios compared with not vaccinating this group. Finally, our simulation estimates that increasing vaccination uptake for the entire eligible population can reduce peak hospitalizations in 2022 by an average of 83% and 87% across all masking scenarios compared to the scenarios where no children are vaccinated. Our simulation suggests that high vaccination uptake among both children and adults is necessary to mitigate the increase in infections from mask removal in schools and workplaces.

8.
JAMA Netw Open ; 4(6): e2110782, 2021 06 01.
Article in English | MEDLINE | ID: covidwho-1248672

ABSTRACT

Importance: Vaccination against SARS-CoV-2 has the potential to significantly reduce transmission and COVID-19 morbidity and mortality. The relative importance of vaccination strategies and nonpharmaceutical interventions (NPIs) is not well understood. Objective: To assess the association of simulated COVID-19 vaccine efficacy and coverage scenarios with and without NPIs with infections, hospitalizations, and deaths. Design, Setting, and Participants: An established agent-based decision analytical model was used to simulate COVID-19 transmission and progression from March 24, 2020, to September 23, 2021. The model simulated COVID-19 spread in North Carolina, a US state of 10.5 million people. A network of 1 017 720 agents was constructed from US Census data to represent the statewide population. Exposures: Scenarios of vaccine efficacy (50% and 90%), vaccine coverage (25%, 50%, and 75% at the end of a 6-month distribution period), and NPIs (reduced mobility, school closings, and use of face masks) maintained and removed during vaccine distribution. Main Outcomes and Measures: Risks of infection from the start of vaccine distribution and risk differences comparing scenarios. Outcome means and SDs were calculated across replications. Results: In the worst-case vaccination scenario (50% efficacy, 25% coverage), a mean (SD) of 2 231 134 (117 867) new infections occurred after vaccination began with NPIs removed, and a mean (SD) of 799 949 (60 279) new infections occurred with NPIs maintained during 11 months. In contrast, in the best-case scenario (90% efficacy, 75% coverage), a mean (SD) of 527 409 (40 637) new infections occurred with NPIs removed and a mean (SD) of 450 575 (32 716) new infections occurred with NPIs maintained. With NPIs removed, lower efficacy (50%) and higher coverage (75%) reduced infection risk by a greater magnitude than higher efficacy (90%) and lower coverage (25%) compared with the worst-case scenario (mean [SD] absolute risk reduction, 13% [1%] and 8% [1%], respectively). Conclusions and Relevance: Simulation outcomes suggest that removing NPIs while vaccines are distributed may result in substantial increases in infections, hospitalizations, and deaths. Furthermore, as NPIs are removed, higher vaccination coverage with less efficacious vaccines can contribute to a larger reduction in risk of SARS-CoV-2 infection compared with more efficacious vaccines at lower coverage. These findings highlight the need for well-resourced and coordinated efforts to achieve high vaccine coverage and continued adherence to NPIs before many prepandemic activities can be resumed.


Subject(s)
COVID-19 Vaccines/pharmacology , COVID-19 , Communicable Disease Control , Mass Vaccination , Vaccination Coverage , Adult , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19/transmission , Communicable Disease Control/methods , Communicable Disease Control/organization & administration , Communicable Disease Control/statistics & numerical data , Computer Simulation , Disease Transmission, Infectious/prevention & control , Female , Hospitalization/statistics & numerical data , Humans , Male , Mass Vaccination/organization & administration , Mass Vaccination/statistics & numerical data , Mortality , North Carolina/epidemiology , Risk Assessment/methods , Risk Assessment/statistics & numerical data , SARS-CoV-2 , Treatment Outcome , Vaccination Coverage/organization & administration , Vaccination Coverage/statistics & numerical data
SELECTION OF CITATIONS
SEARCH DETAIL